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Abstract—The mechanical behavior of a material manifold with dislocations and disclinations is
explored by applying non-Riemannian geometry and gauge field theory. A geometric gauge theory
of metric defects is introduced by local Lorentz invartance. As a result, we give the connection
cocfficients with the affine and the gauge connection. Taking the displacement field. the frame field
and gauge field as basic parameters, we obtain the constitutive equations and the governing equations
bused on a variational principle with respect to the groups of a coordinate transformation and a
gauge transformation.

1. INTRODUCTION

Generalized continuum mechanics is an important phase of current development in modern
continuum mechanics. This field, initially studied by Kondo (1954a.b). Kondo and Ishizuka
(1955), Kroner and Ricder (1956), Kroner (1958), Bilby ¢ af. (1955) and Bilby (1960). is
closely related to the theory of non-Riemannian geometry. [n continuous distribution thcory
of defects, it has been discovered that the reference configuration, in the constructs of non-
Ricmannian space, such as metric, torsion and curvature tensors, is a Euclidean space with
Euclidean metric structure and topological structure. According to the breaking of different
structures of Euclidean space, defects are called metric or topological defects, respectively.

When the Yang-Mills (1954) theory was established, one recognized that Riemannian
geometry itself essentially belongs to a kind of gauge ficld theory given by Utiyama (1956,
1971). Furthermore, it has recently been learned from the study of supergravity that the
geometry of non-Ricmannian space with non-vanishing torsion also belongs to a kind of
non-Abeliun gauge theory.

It is known that non-Abclian gauge theory can be naturally applied to any field in
theoretical physics, provided that the field is related to Riemanntan or non-Riemannian
geometry. Based on this point of view, some work has been done in using the gauge theory
to study generalized continua. Golebiewska-Lasota (1979) and Golbiewska-Lasota and
Edelen (1979) first used Abelian gauge theory to discuss the guage invariance of the
governing cquations with electromagnetic ficld theory. Their work led to further study by
Edcelen (1980) and Kadic and Edelen (1983) in Yang-Mills minimal coupling for materials
with dislocations and disclinations. In the field of geometric gauge theory, Duan (1985)
and Duan and Duan (1986) discussed the geometric representation of the gauge theory of
defects.

For a complete theory of generalized continuum mechanics, we have to deal not only
with the geometric aspects of the material manifold but some process of physics. In this
paper, we establish a geometric gauge theory of metric defects based on Lorentz invariance
and continuous distribution theory of defects.

2. OBSERVATIONS OF THE MODELING

The mathematical theory of non-Abelian gauge theory, which was introduced by Yang
and Mills (1954), takes the transformation of gauge potentials as
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!
B,=S 'B.S+ S '¢.S ()
&
where S is the spin gauge transformation.
Kondo and Ishizuka (1955) gave the transformation of connection as follows :
L= ABLBIT, + A1, B! 2)

which is symmetric or non-symmetric with respect to indices 8 and £ under the coordinate
transformation

From the expressions (1) and (2). we obtain the following information.

(1) These transformations have non-homogeneous terms (1'8)S ™ '(’,,S and A¢, 8.
under corresponding transformation. Therefore, (1) and (2) mean that the symmetry is
broken.

It 1s well known that the transformation operator 8} may be written as

By =0, +V, " (4
where

Vel = 0 W T A, (5)

are covariant derivatives with respect to the connections I, Under the first order approxi-
mation, covariant derivatives V, B may be rewritien as

(i

VS o, (6)
Then we have
By = o)+ 0,0 = 8+ (7)
where 7, are called differential extensions,
For fixed index j, ), are covariant components of a vector in the (ff) system and are
written as the sum of a gradient and a rotation
Ty = dj+
based on the principle of decomposition, where
o) = (grad ')y, ¢ = (rotd’),.
Therefore
Ay B = ANy + 7 ucth). (8)
In a vector ficld, rot- grad = 0, the Ricei cocllicients
Q) = 2470y )]

It means that the antisymmetric field ¢4 plays a leading role and symmetric ficld «j plays
an indirect role. The non-symmetric part of the connection gives an antisymmetric ficld
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which is not only induced by a stress field. but can also be generalized to be induced by
other physical effects. Therefore, symmetry breaking will play a role in an antisymmetric
field.

(2) Since Lorentz group % is a linear transformation group depending on some
parameters, the gauge symmetry of a rotation field will be broken under a local Lorentz
transformation group and the role of a rotation field may be determined by the physical
effect of a gauge field. Therefore, gauge potentials B%" must be antisymmetric for con-
travariant indices «” and b’ i.¢.

B." +8B," =0. (10)

This means that gauge potentials B¢" take values in Lie algebra | of Lorentz group .

The coordinate components of gauge potentials are B};. which satisfy the followtng trans-
formation laws:
B, = A’B}BiB\ + AC,B; (tn)

and their antisymmetric parts are

BF/«A[ = A,’B,’,BfBE,H +QI'U‘

or
Bl’/hil ‘Q;M = A:B/GB“}{,&]-
Let
Spi = By — (12)
then
Spl = ABLBS ) (13)
where
Si =By, Q=0 (14)

The expression (13) means that gauge potentials 8%; are gauge-invariant and the role
of an antisymmetric ficld is determined by both the antisymmetric part 8, of the gauge
potentials and Ricci coeflicients Q.

(3) In the mathematical theory of a gauge field, we choose a torsion tensor S and a
spin

Shi = Spl =85 =S (15)

as a gauge-tnvariant physical variable which is independent of the choice of coordinate
system, where

S}lxi =g B(’,‘m +.‘/‘A‘Qf.ﬂ
g;;/;(,/;ll +g;;Q:;:' ( l6)

x
ip

From (13) and (15). itis obvious that we must choose gauge potentials Bj; as basic variables
of a field.

3. THE PHYSICAL MODEL

In the classical theory of a continuum with defects. the dynamics of dislocations
satisfied global Lorentz invariance. and defects in generalized solids satisfied only local
Lorentz invariance in coupled physical fields. From the viewpoint of ficlds. just as the
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physical substance of a topological defect introduces an antisymmetric field. there are other
physical fields having antisymmetry. Therefore, we treat them uniformly with the role of
antisymmetric fields by gauge potentials having antisymmetry.

For the physical model of this paper, we introduce two basic assumptions as follows:

(1) the dynamics of continuum dislocations satisfies a local Lorentz invanance in
generalized solids;

(2) first integrable conditions of a frame field are broken.

Thus, from assumption (1), there exists a local Lorentz frame field {¢f (x)} which
transforms on every space-time point, where @’ = 0,1.2,3 is the index of the frame and
2 = 0.1.2.3 ts the index of the coordinate. For «’, ¢¢ (x) are contravariant components of
the local Lorentz frame and for . they are covariant components of the local coordinate
system. and they satisfy

i ” . .
¢ (,{,. = (‘)/X, Vet = gy

2t f=0.1.2.3.a.h=0,122
The Lorentz frame ficld determines the metric of space time

(dS): = Yo dx* dXx"; Gy = Howts "’7/

where a,, = diag (1. — {1, — 1, — 1) is the local Minkowski value of the metric and

2ff

it

g .(r) (!(‘, ~(.1‘ .(,f: __(.r-_ .(,s'é -t ’i"’i‘
The matrix of the metric may be written as
v e #r
G = (_‘/xﬂ}u G ficy = {c] )j(i’g: )
where J = (i, ). Therefore, the local transformation group of the frame is a Lorentz group
‘{'/l
From assumption (2),

. I
Q}?x = f‘}{grl’:"; = Y Cip f;; # 0,

where ¥4 is a connection of the frame field ¢ (x), and
S

R RN % x R Mo # ()
The T Op pt0- 0 = Gyl ‘()’ ; Cp W T
where ¢y = ¢/dx"

We introduce a differential operator
X, = eXd,.
For the covariant components of the frame, we have

Wy = Yool = Xl = o]

I AT S I, DT
Che = Ve — ey = =Firey

and
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2Xi v = Xeha — Xathe

wt Wt N SPY A -
VTNt Th o Che R,y

i

where R, “, are the frame components of a curvature tensor.

4. THE EUCLIDEAN CONNECTION

Let {¢¥(x)} be a Lorentz frame field in space-time of four dimensions and Vi,
14 +dV% be two vectors at point P(x*) and its adjacent point Q(* +dx*). respectively.
The Lorentz frame field introduces a change in ¥ as

ovy =dvy—-dvy (17

where d 4 is the change introduced by vector V7 itself. and d¥j is the change introduced
by Lorentz frame field at points P and Q. '
A matrix element of Lorentz group % is L¢ at point P and L¢ +dL¢ at point Q, then

Vi+dVi = Vi+ Lo dVi+VidLy
and
Vi+dvy = v+ L, dvi+vidLy.
Substituting (17) into the above two equations and subtracting them, we obtain
Wiy = Lyovy. (18)
This means that 3¥ is a vector and it is independent of the choice of the Lorentz frame.
For every vector Vi, if
—dvy =dV; =0 (19)
holds, we say that the Lorentz frames at points P and Q are quasi-parallel.
Let T3, be the space time connection of the local coordinate system. For contravariant
and covariant vectors W4 and Vi, we have
SWh =dWh 4T, w2 dx?
and their covariant derivatives are
f
VWi =wh,=wl,+TLW:
ViV = Vi = Via =T,V (20)
where the comma indicates a partial derivative with respect to coordinates and the symbol
*1"* means a covariant derivative with respect to the connection I},

We can obtain a transformation of the conncection I}, with respect to non-holonomic
transformation of the coordinates. On the one hand we have

dicy = Tiyed = MyBlel
and on the other hand
8.&('?;' = aA[B/’f"‘;‘]
= (0:B))ef + Bjy(9:¢')
= (¢iBj)e] + B Bi(die)).
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Thus, we have
[l = A!ByBiT, + AIC, B. (2

The frame field {e; (x)} determines the metric and geometric structures of the space
time. Therefore, indices of the frame get into all geometric objects and must be Lorentz
invariant, Obviously. if we have

Thy = Tiyey ~en = TiyLieilnel = DigetesLaly = iy Lil).
we obtain

L3 «
r:/‘ = r;:'/;ez ‘e, and ri,, = r;:ﬂ(': '('i". (22

Thus, on the one hand we have

a b b b b
o€y = r}ll(’x = r}/athz (23)
and on the other hand we obtain
AN Ak b
Lty = (A[LI-(/{}

i

S AL W h
(oL, )('/« + Ly ((1;(/!) (24)
in the local coordinate system. This means that S, is a tensor and is gauge-invariant. S

is called a torsion tensor.,
From the isometric principle

Q. =V =0 or Qt=V¢"=0, (25)
we obtain the symmetric part of the Euclidean connection as
r: _ x ] r: /!rx . 26
tea) = p i =9V Y iy s (- )
then the Euclidean connection is
2
r:u. - { -}+S;::_S;l’/ﬁ—-s;u—ﬂ;i +Q;‘l/ +Q:‘|' (27)
[T

Let us now consider the gauge theory of metric defects under local Lorentz invariance.
B, is the coordinate component of the gauge potential and substituting (12) into (27) we
obtain

i

{““;}M;A—B;J—B:“ (28)

where

x

i} . —
i = !/’4 By and B; W= .‘/f. e (29)

Equation (28) shows that the frame field {e%(x)} and the gauge potential Bj; together
determine the geometrical structure of the continuum with metric defects and the gauge
field.
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5. THE FIELD EQUATIONS

Firstly, we consider the structure of a Lagrangian function describing metric defects
and a gauge field. Obviously, ¢/ and B4" are independent variables of the field describing
the properties of a continuum with metric defects and a gauge field.

Setting
& = (é’Z“')o@,hs 3 30
et = npepen. 31

we obtain the strength of a gauge field as

Fh;n = 6 Bl’u u 2V+B:{\'Bhu B:';xB'hu* (3-’
and

uu, = (Fhu\)ﬂsu,hsl' (~~
The strength of a gauge field satisfies the Bianchi equality
F‘l’mvlll + F’fl'vliht + F;:Amlv = 0‘ (34)

where the symbol || means the covariant derivative with respect to the coordinate and
the strength of a gauge ficld, i.c.

] Al X o at i ~
'hpﬂ[& = (’ Ihuv - {)‘ u }I bav _{/. ‘} In;n + I‘MI by I}Iul gt (‘))

Now the total Lagrangian function of the system is
L= Le + Lu + Lnns (}())
where L, is the Lagrangian function of an elastic field, L, the Lagrangian function of a

gauge field and L, the Lagrangian function describing the interaction between the frame
field ¢4 and the gauge ficld B2, and we have

L.=L.(u,u,.) (37)
L,=1r(F.F") (38)

and
-nl =1r (F.uve“ ) = AR (39)
R = Ric, (40)

and
R" = F:,‘h(.’,(‘,,“ (.’ ("”)

Obviously, L., L, and L;, are invariant under the group-couple % x o/, where the
group .« is the group of a non-homonomic transformation of the coordinates.

Equation (36) shows that the gauge field (84") and the frame field (¢¢) commonly
describe the field of metric defects.

The action functional is
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S= J [L,‘ - gtr (F F")y—k tr(F“,e‘“‘)].t: d*x, (42)

where

¢ = det(e) = [—det(g,)]"*

and n is a new coupled constant.

Suppose that Hamilton’s principle holds, and taking the variation of the action func-
tional with respect to ¢; and B, we can obtain the new equations of the elastic field and
the metric defect ficld as follows:

cL.o cL, 0 43
u, € o C?‘u“‘, e )
R — 1Re! = — VL(rr"+T“) 44
1 2 a = 2K 1o a ( }
and

”F“:f\w\ = 21\".‘;!'4_ -:fh (45)

where
o= — [t (F ™), — S te (F F'7)el] (46)

is an cnergy momentum tensor of metric defects,
= = Sk = Sheien = Sheid] = —dny, (47)
is the density of the spin flow in the field of metric defects, and

S(l

oAb 7 o 3
e = ‘S(Itded"‘ycv = _20[11(‘:] "—28-“[;1‘31 (48)
is the torston tensor of the space-time. T% is an energy-momentum tensor of the elastic
ficld, and

TH — ! Q('L) 49)
“T e oBe (
is the density of the spin flow in the elastic field.
Therefore, the action of metric defects represents not only the geometric effect of the
metric, but the physical effect of the gauge potential. Thus, this theory is different from the
dynumic theory of the continuous distribution.

6. DISCUSSION

(1) In our treatment, the space-time is a non-Riemannian space of four dimensions,
the gecometry of the space-time is connected with metric defects, and the gauge field is of
non-Riemannian geometry. This space-time not only has curvature, but also torsion. The
conncction of the space-time has two parts, namely the affinc and the gauge. In particular,
the gauge potential describes both the defects and the effect of the physical field. Thus, our
procedure is different from the three state theory of the gauge field of a continuum with
dislocations and disclinations given by Duan and Duan (1986).

(2) Since
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o
- 4
U, = Cu,— u, — B.u,.
pov

then the field equation (43) contains a coupled effect of the metric defect and the gauge
potential. Therefore, (43) is different from the representation of the Cauchy strain tensor
provided by Golebiewska-Lasota (1979).

(3) Equation (44) is a new field equation. It is the generalization of Einstein’s equation
(1917) and it describes the gauge theory of the metric defect containing the elastic field.
Based on continuous distribution theory of metric defects analogized with gravity theory,
and setting 74 = 0. we obtain

1

K= l6zk

where & is the so-called Newton's constant of gravity. When the gauge potential B%, = 0,
we obtain the results of continuous distribution of the dynamic metric defect given by Dong
and Zhang (1985) and Sedov and Berditehevski (1967).

Kondo (1958) has analogously discussed the general relativity and Guo et al. (1973)
have analogously discussed the gauge theory of gravitational field. The correspondence
given in this paper is the generalization of the correspondence between the continuous
distribution theory of defects and gravity field theory or electromagnetic field theory.
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