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Abstract-The mechanical behavior of a material manifold with dislocations and di~linations is
explored by applying non-Riemannian geometry and gauge field theory. A geometric gauge theory
of metric def~'Cts is introduced by loeal Lorentz invariance. As a result. we give the conn~'Ction

coefficients with the affine and the gauge connection. Taking the displacement field. the frame field
and gauge field as basic parameters. we obtain the constitutive equations and the governing equations
based on a variational principle with respect to the groups of a coordinate transformation and a
gauge transformation.

I. INTRODUCTION

Generalized continuum mechanics is an important phase ofcurrent development in modern
continuum mechanics. This field. initially studied by Kondo (1954a.b). Kondo and Ishizuka
(1955). Kroner and Rieder (1956). Kroner (1958). Bilby el al. (1955) and Bilby ( 1960). is
closely related to the theory of non-Riemannian geometry. In continuous distribution theory
of defects. it has been discovered that the reference configuration. in the constructs of non­
Riemannian space. such as metric. torsion and curvature tensors. is a Euclidean space with
Euclidean metric structure and topological structure. According to the breaking ofdifferent
structures of Euclidean space. defects arc called metric or topological defects. respectively.

When the Yang -Mills (1954) theory was established. one recognized that Riemannian
geometry itself essentially belongs to a kind of gauge field theory given by Utiyama (1956.
1971). Furthermore. it has recently been learned from the study of supergravity that the
geometry of non-Riemannian space with non-vanishing torsion also belongs to a kind of
non-Abelian gauge theory.

It is known that non-Abelian gauge theory can be naturally applied to any field in
theoretical physics. provided that the field is related to Riemannian or non-Riemannian
geometry. Based on this point of view. some work has been done in using the gauge theory
to study generalized continua. Golebiewska-Lasota (1979) and Golbiewska-Lasota and
Edelen (1979) first used Abelian gauge theory to discuss the guage invariance of the
governing equations with electromagnetic field theory. Their work led to further study by
Edelen (1980) and Kadic and Edelen (1983) in Yang-Mills minimal coupling for materials
with dislocations and disclinations. In the field of geometric gauge theory. Duan (1985)
and Du'lI1 and Duan (1986) discussed the geometric representation of the gauge theory of
defects.

For a complete theory of generalized continuum mechanics. we have to deal not only
with the gcometric aspects of the matcrial manifold but some process of physics. In this
p"pcr. we establish a geometric gauge theory of metric defects bascd on Lorentz invariance
and continuous distribution theory of defects.

2. OBSERVATIONS OF THE MODELING

The mathematical theory of non-Abelian gauge theory. which was introduced by Yang
and Mills (1954). takes the transformation of gauge potentials as
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B;, = 5 I B" 5 + I 5 Ii'·" 5
/;

( I)

where 5 is the spin gauge transformation.
Kondo and Ishizuka (1955) gave the transformation of connection as follows:

(2)

which is symmetric or non-symmetric with respect to indices {~ and i. under the coordinate
transformation

('X'
B II = :;-,--:11 ' B· I = (A,').

L

From the expressions (I) and (2). we obtain the following information.

( I) These transformations haw non-homogeneous terms (i 'd5 - '1',,5 and A:('II B:
under corresponding transformation. Therefore. (I) and (2) mean that the symmetry IS

broken.
It is well known that the transformation operator 1J;, may be written as

(4)

where

(5)

are covariant derivatives with respect to the connections ['I,. Under the first order approxi­
mation. covariant derivatives VII W' Illay he rewrittcn as

Then we have

V· '1" Ii!! 1 ".,
/1' - (·/1" . (6)

(7)

where nil are calb.l dillcrential extensions.
For fixed index j. n/I arc covariant components of a vector in the un system and are

written as the sum of a gradient and a rotation

based on the principle of decomposition. where

Therefore

(X)

In a vector field. rot· grad == O. the Ricci coellkients

(9)

It means that the antisymmetrie lidd el' plays a leading role and symmetric field (//1 plays
an indirect role. The non-symmetric part of the connection gives an antisymmetric field
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which is not only induced by a stress field. but can also be generalized to be induced by
other physical effects. Therefore. symmetry breaking will playa role in an antisymmetric
field.

(2) Since Lorentz group !fl is a linear transformation group depending on some
parameters. the gauge symmetry of a rotation field will be broken under a local Lorentz
transformation group and the role of a rotation field may be determined by the physical
effect of a gauge field. Therefore. gauge potentials B~h must be antisymmetric for con­
travariant indices (/' and h'. i.e.

B;: h + B~" = O. ( 10)

This means that gauge potentials B;:h take values in Lie algebra I of Lorentz group !fl.
The coordinate components of gauge potentials are Biri. which satisfy the followtng trans­
formation laws:

( II)

and their antisymmetric parts are

or

Let

( 12)

then

( 13)

when.:

( 14)

The expression (13) means that g;lUge potentials IJir< are gauge-invariant ;lnd the role
or an antisymrnetric fickl is determined by both the antisymrnetric part IJif/;1 or the gauge
potentials and Ricci coellicients nir;.

(3) In the mathematical theory or a gauge field. we choose a torsion tensor SII: and a
Spill

( 15)

as a gauge-inv;lriant physical variable which is independent of the choice or coordinate
system. where

( 16)

From (13) and (15). it is obvious that we must choose gauge potentials Bis;. as basic variables
of a field.

3. TIlE PHYSICAL MODEL

In the classical theory of a continuum with defects. the dynamics of dislocations
satisfied global Lorentz invariance. and defects in generalized solids satisfied only local
Lorentz invariance in coupled physical fields. From the viewpoint of fields. just as the



610 L. K. [)Ol'G 1'1 I.//.

physical substance of a topological defect introduces an antisymmetric field. there are other
physical fields having antisymmetry. Therefore. we treat them uniformly with the role of
antisymmetric fields by gauge potentials having antisymmetry.

For the physical model of this paper, we introduce two basic assumptions as follows:

(I) the dynamics of continuum dislocations satisfies a local Lorentz invuriance in
generalized solids;

(~) first integrable conditions of a frame field are broken.

Thus, from assumption (I), there exists a local Lorentz frame fidd :e~ (x): which
transforms on every space-time point, where a' = 0, I.~. 3 is the index of the frame and
::t = O. I.~, 3 is the index of the coordinate. For a', e~(x) are contravariant components of
the local Lorentz frame and for ::t. they are covariant components of the local coordinate
system. and they satisfy

::t, II = 0, I. ~, 3 ; a'. h' = 0, I, ~, 3.

The Lorentz frame field determines the metric of space time

where 'l"" = diag (I, - I. I, - I) is the local Minkowski value of the metric and

The matrix of the metric Illay be written as

where j "" (ll,'I»' Therefore, the local transformation group of the frame is a Lorentz group
2'.

Frolll assumption (~),

where i'~,· is a connection of the frame field ('~. (x), and

..". =e' ,£,11
.(,,' = [tJ e' _{ :x }e,.Jell.cU

'" 0
II>, h ;11 ,. II I> Ii i. I> , •

where /'/1 :::: /'//1.,,/1.

We introduce a differential operator

For the covariant components of the frame. we have

where

and
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'lV •." -X .." X ..'''
-'~k/~IJ'I- "/~J'- J'/~'("

_ ••''' .. 1'' ••,,' C" R 'u'
-1/ (J'llh'ld-/~" ~",- h',·J'

where R~ ,"J' are the frame components of a curvature tensor.
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4, THE EUCLIDEAN CONNECTION

Let :e'; (x): be a Lorentz frame field in space-time of four dimensions and ViJ·
Vil' +dVil be two vectors at point P(.J1) and its adjacent point Q(.J1+d.\JI). respectively.
The Lorentz frame field introduces a change in Vii as

(17)

where d ViJ is the change introduced by vector V;i' itself. and aVii is the change introduced
by Lorentz frame field at points P and Q.

A matrix element of Lorentz group.!l' is L::' at point P and L::' +dL~' at point Q. then

V,,'+dV'" = VU'+L'" dV"+ V" dL'"fI It fI U II It "

and

v;: +av;: = Vil +L::' aVI:+ V;: dL::'.

Substituting (17) into the above two equations and subtracting them. we obtain

( 18)

This means that () Vir is a vector and it is independent of the choice of the Lorentz frame.
For every vector V;;'. if

( 19)

holds. we say that the Lorentz frames at points P and Q arc quasi-parallel.
Let q. be the space time connection of the local coordinate system. For contravariant

and covariant vectors W!:, and Vi:. we have

J W!:, = d W~, + r~. W~, dx'

J Vi:' = d VI: - nil v~' dx'

and their covariant derivatives arc

v. w~, = W~I' = W~,.l +n. W:,

C7 V''' - V''' - V"' r' V'''\'. II - /II. - It.• - 'It • (20)

where the comma indicates a partial derivative with respect to coordinates and the symbol
"'" means a covariant derivative with respect to the connection n/l'

We can obtain a transformation of the connection nil with respect to non-holonomic
transformation of the coordinates. On the one hand we have

and on the other hand

2.c'/ = c:,\[B;'cn

=(iJ.B~)ci' + BII(o;.c;'>

= (c:'J;.B;')ci' + B!I B1 (Okej)
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Thus. we have
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(21 )

The frame field [e':(x)} determines the metric and geometric structures of the space
time. Therefore. indices of the frame get into all geometric objects and must be Lorentz
invariant. Obviously. if we have

we obtain

(22)

Thus. on the one hand we have

(23)

and on the other hand we obtain

(24)

in the local coordinate system. This means that SAl; is a tensor and is gauge-invariant. SAl;
is called a torsion tensor.

From the isometric principle

(25)

we obtain the symmetric part of the Euclidean connection as

(26)

then the Euclidean connection is

(27)

Let us now consider the gauge theory of metric defects under local Lorentz invmiancc.
B;';. is the coordinate component of the gauge potential and substituting (12) into (27) we
obtain

where

r;.. = { ':X. .} + B;'. - B;' • - B; I'
Jl I.

(28)

(29)

Equation (28) shows that the frame field {e~· (x)} and the gauge potential B"#i. together
determine the geometrical structure of the continuum with metric defects and the gauge
field.
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5, THE FIELD EQUATIONS

Firstly. we consider the structure of a lagrangian function describing metric defects
and a gauge field. Obviously. e~ and B~" are independent variables of the field describing
the properties of a continuum with metric defects and a gauge field.

Setting

(30)

(31 )

we obtain the strength of a gauge field as

and

(33)

The strength of a gauge field satisfies the Bianchi equality

where the symbol "11" means the covariant derivative with respect to the coordinate and
the strength of a gauge field. i.e.

'u ~'u {OC}.u {OC}.u u', ,'ufb,,,'I;' = (,;.1'''1''- 1 1-"... -. 1-"I.. + IJ,.I-"",-IJ";l·q,,..
, 1'. JI ). \'

Now the total Ligrangian function of the system is

L =L. + L~ +LIII,.

(.\5)

(36)

where L. is the lagrangian function of an elastic field. Lq the lagrangian function of a
gauge field and L tnl the lagrangian function describing the interaction between the frame
field e~~ and the gauge field B~". and we have

and

and

L,n. = tr(F,,,eI"') = kR

(37)

(3X)

(39)

(40)

(41 )

Obviously. L•• Lg and L inl arc invariant under the group-couple !I' x .r:-I. where the
group .tV is the group of a non-homonomic transformation of the coordinates.

Equation (36) shows that the gauge field (B;:") and the frame field k~) commonly
describe the field of metric defects.

The action functional is
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(42)

where

c = det (e:~) = [ - det(g,,,)] I ~

and '1 is a new coupled constant.
Suppose thilt Hamilton's principle holds. and taking the variation of the action func­

tional with respect to e:: and B;:I>. we can obtain the new equations of the elastic field and
the metric defect field as follows:

(43)

(44)

and

(45)

whae

(46)

IS an energy momentum tensor of I11ctril: dcfel:ts.

(47)

is thl.: density or thl.: spin Ilow in the Ikld of m..:tric dt:f..:cts. and

is th..: torsiol1 tensor of the space-time. T~: is an energy-momentum tensor of the elastic
fidd. and

(49)

is the density of the spin Ilow in the clastic field.
Therefore. the action of metric defects represents not only the geometric elfect of the

metric. but the physical etlcct of the gauge potential. Thus. this theory is different from the
dynamic theory of the continuous distribution.

6. DISCUSSION

(I) In our treatment, the space-time is a non-Riemannian space of four dimensions,
the geometry of the space-time is connected with metric defects, and the gauge field is of
non-Riemannian geometry. This space-time not only has curvature, but also torsion. The
connection of the space-time has two parts, namely the affine and the gauge. In particular,
the gauge potential describes both the defects and the effect of the physical field. Thus. our
procedure is different from the three state theory of the gauge field of a continuum with
dislocations and disclinations given by Duan and Duan (1986).

(2) Since
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then the field equation (43) contains a coupled effect of the metric defect and the gauge
potential. Therefore, (43) is different from the representation of the Cauchy strain tensor
provided by Golebiewska-lasota (1979).

(3) Equation (~) is a new field equation. It is the generalization of Einstein's equation
(1917) and it describes the gauge theory of the metric defect containing the elastic field.
Based on continuous distribution theory of metric defects analogized with gravity theory,
and setting t:: = O. we obtain

I
K=­

16:rk

where k is the so-called Newton's constant of gravity. When the gauge potential B~" == 0,
we obtain the results ofcontinuous distribution of the dynamic metric defect given by Dong
and Zhang (1985) and Sedov and Berditehevski (1967).

Kondo (1958) has .malogously discussed the general relativity and Guo ef al. (1973)
have analogously discussed the gauge theory of gravitational field. The correspondence
given in this paper is the generaliz.ltion of the correspondence between the continuous
distribution theory of defects and gravity field theory or electromagnetic field theory.
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